В качестве температурно-чувствительных веществ используют жидкие кристаллы, кристаллические люминофоры, тонкие плёнки полупроводников, магнитные тонкие плёнки, термочувствительные лаки и краски и др.

Так, жидкие кристаллы по мере нагревания постепенно изменяют свой цвет (и его оттенки) от красного до фиолетового, причём многокомпонентные смеси холестерических жидких кристаллов имеют температурный интервал цветовой индикации менее 0,1 °C. Термочувствительные краски при нагреве один или два раза изменяют свой цвет (обычно необратимо), фиксируя тем самым одно или два значения температуры, что удобно в тех случаях, когда достаточно узнать, нагрет ли исследуемый объект (например, деталь машины) до некоторой критической температуры. В некоторых полупроводниковых плёнках (особенно в плёнках Se и его производных) с повышением температуры область прозрачности смещается в сторону длинных волн, что позволяет, применяя дополнительный источник видимого света, регистрировать изменение их температуры на 1-5 °С. Применение в тепловидении люминофоров основано на явлении тушения люминесценции: яркость свечения некоторых люминофоров (например, соединения ZnS, CdS, Ag, Ni), возбуждённых ультрафиолетовым излучением, резко уменьшается по мере их нагревания. Эти люминофоры позволяют визуально наблюдать изменение температуры на 0,2-0,3 °С, причём эффект тушения полностью обратим. Приборы, основанные на применении люминофоров, позволяют видеть не только тепловые лучи, но и радиоволны. В магнитных тонких плёнках при нагреве изменяется ориентация осей намагничивания магнитных доменов, ориентирующих, в свою очередь, ферромагнитные частицы коллоидного раствора, нанесённого на поверхность плёнки. Этот "магнитный рельеф", возникающий под действием тепловых лучей, при намагничивании плёнки становится видимым в обычном отражённом свете. Рассмотренные методы тепловидения реализованы в ряде устройств, получивших название термофотоаппарат, визуализатор, термоинтроскоп, радиовизор и др.

Плёнки вышеуказанных веществ могут наноситься и непосредственно на объект - для изучения распределения температуры его поверхности; это научное направление, получившее название термографии, иногда называется также тепловидением (в этом случае, однако, регистрируется температура, а не тепловое излучение объекта). К термографии можно отнести также и применение инфракрасных лазеров (например, на парах CO2, с длиной волны 10,6 мкм, соответствующей максимуму теплового излучения при температуре 23 °С) в целях просвечивания объектов, непрозрачных для видимого света; оно получило развитие в 70-х гг.

Предыдущая страница

Вернуться на начало страницы

Следующая страница

Высказать мнение о странице автору

Hosted by uCoz